Tuesday, June 30, 2015

Dramatic Sea Ice Decline In Beaufort Sea in June 2015

The image below illustrates the dramatic fall in sea ice thickness (in m) in the Beaufort Sea over the past month. The left panel shows sea ice thickness on May 29, 2015, and the panel on the right shows sea ice thickness on June 29, 2015.


The 30-day animation below further illustrates this dramatic fall in sea ice thickness (from June 8-29, with forecast up to July 7, 2015).




Another perspective is sea ice concentration. The image below shows the high concentration back on May 1, 2015.



The 30-day animation below shows the dramatic fall in sea ice concentration (from June 8-29, with forecast up to July 7, 2015).



Below an interview by Judy Sole with Professor Peter Wadhams, held May 15, 2015, and entitled 'Our time is running out - The Arctic sea ice is going!'


Meanwhile, very high temperatures keep showing up within the Arctic Circle. On July 1, 2015, a temperature of 36°C (96.8°F) was reached near the Kolyma River that ends in the East Siberian Sea, as illustrated by the images below (green circle).


The image below also shows the location where this high temperature was reached (red marker), as well as the depth of the seabed and the Gakkel Ridge that runs in between the northern tip of Greenland and the Laptev Sea.



Related

- High Methane Levels over Laptev Sea
http://arctic-news.blogspot.com/2013/10/high-methane-levels-over-laptev-sea.html

- Accelerated Warming in the Arctic
http://arctic-news.blogspot.com/2015/06/accelerated-warming-in-the-arctic.html

- Gulf Stream brings ever warmer water into Arctic Ocean
http://arctic-news.blogspot.com/2015/06/gulf-stream-brings-ever-warmer-water-into-arctic-ocean.html

- High Temperatures in the Arctic
http://arctic-news.blogspot.com/2015/06/high-temperatures-in-the-arctic.html

- Heat Wave Forecast For Russia Early June 2015 
http://arctic-news.blogspot.com/2015/06/heat-wave-forecast-for-russia-early-june-2015.html

Dramatic Sea Ice Decline In Beaufort Sea in June 2015 http://arctic-news.blogspot.com/2015/06/dramatic-sea-ice-decline-in-beaufort-sea-in-june-2015.html
Posted by Sam Carana on Tuesday, June 30, 2015

Thursday, June 25, 2015

Accelerated Warming in the Arctic


Warming in the Arctic is accelerating. On June 25, 2015, high temperatures hit North America. Temperatures as high as 30.3°C (86.54°F) were recorded where the Mackenzie River is flowing into the Arctic Ocean.

June 25, 2015 - High temperatures over North America, close to the Arctic Ocean

On July 1, 2015, temperatures are forecast to be as high as 111.4°F (or 44.1°C) near Chico, north of San Francisco. Temperatures are forecast to be high over most of North America and Eastern Siberia, threatening to further warm up waters of the Arctic Ocean.

Forecast for July 1, 2015 - High temperatures over North America, close to the Arctic Ocean

The image below shows that on June 27, 2015, temperatures of well over 40°C (104°F) were recorded in Europe and in Pakistan, where temperatures earlier this month had reached 49°C (120.2°F) in some places. The heat wave reportedly killed 1233 people in Karachi alone. This in addition to the 2500 people killed earlier in India by high temperatures.

June 27, 2015 - High temperatures over Russia, close to the Arctic Ocean
High temperatures at such locations are very worrying, for a number of reasons, including:
  • They are examples of heatwaves that can increasingly extend far to the north, all the way into the Arctic Ocean, speeding up warming of the Arctic Ocean seabed and threatening to unleash huge methane eruptions. 
  • They set the scene for wildfires that emit not only greenhouse gases such as carbon dioxide and methane, but also pollutants such as carbon monoxide (that depletes hydroxyl that could otherwise break down methane) and black carbon (that when settling on ice causes it to absorb more sunlight).
  • They cause warming of the water of rivers that end up in the Arctic Ocean, thus resulting in additional sea ice decline and warming of the Arctic Ocean seabed. 
June 24, 2015 - Smoke from wildfires in Alaska - from: wunderground.com
The image below shows increased sea surface temperature anomalies in the Arctic. Note the warming in the area of the Beaufort Sea where the Mackenzie River is flowing into the Arctic Ocean.


Very warm water is also flowing from the Pacific Ocean through the Bering Strait into the Arctic Ocean.  As the image below shows, the water that is flowing into the Arctic Ocean from the Pacific is much warmer than it used to be, as much as 6.1°C (10.98°F) warmer.

View the flow of the water on the animated version of above image at earth.nullschool.net
As said above, warm water flowing from rivers into the Arctic Ocean is a major contributor to these sea surface temperature anomalies. As also illustrated by the NOAA image below, rivers carrying warm water into the Bering Strait include the Kobuk River, the Naotak River and the Yukon River that flows all the way from British Columbia, Canada, through Alaska and ends in the Bering Strait. Sea surface temperatures near the coast of Alaska were as high as 19°C (66.2°F) from June 21-24, 2015.

Sea surface temperatures near the coast of Alaska as high as 19°C (66.2°F) from June 21-24, 2015
The Naval Research Laboratory animation below shows changes to Arctic sea ice thickness. Sea ice thickness (in m) down to zero where the Mackenzie River flows into the Arctic Ocean and in the Bering Strait where warm water from the Pacific is entering the Arctic Ocean.


The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.


Related

- Gulf Stream brings ever warmer water into Arctic Ocean
http://arctic-news.blogspot.com/2015/06/gulf-stream-brings-ever-warmer-water-into-arctic-ocean.html

- High Temperatures in the Arctic

- Heat Wave Forecast For Russia Early June 2015http://arctic-news.blogspot.com/2015/06/heat-wave-forecast-for-russia-early-june-2015.html

Sea surface temperature anomalies in the Arctic. Note the warming in the area of the Beaufort Sea where the Mackenzie...
Posted by Sam Carana on Thursday, June 25, 2015

Wednesday, June 24, 2015

Data Scraping - Hand Scraped Hardwood Flooring Gives Your Home That Exclusive Look

Today hand scraped hardwood flooring is becoming extremely popular in the more opulent homes as well as in some commercial properties. Although this type of flooring has only recently become fashionable it has been around for many centuries.

Certainly before the invention of modern sanding techniques all floors where hand scraped at the location where they were to be installed to ensure that the floor would be flat and even. However today this method is used instead to provide texture, richness as well as a unique look and feel to the flooring.

Although manufacturers have produced machines which can provide a scraped look to their flooring it looks cheap compared to the real thing. Unfortunately the main problem with using a machine to scrape the flooring is that it provides a uniform look to the pattern of the wood. Because of this it lacks the natural feel that you would see with a floor which has been scraped by hand.

When done by hand, scraping creates a truly unique look to the floor. However the actual look and feel of each floor will vary as it depends on the skills of the person actually carrying out the work. If there is no control in place whilst the work is being carried out this can result in disastrous look to the finished product.

Many manufacturers who actually provide hand scraped hardwood flooring will either just dent, scoop or rough the floor up. But others will use sanding techniques in order to create a worn and uneven look to the flooring. The more professional teams will scrape the entire surface of the wood in order to create the unique hand made look for their customers.

Many companies will allow their customers to choose what type of scraping takes place on their wood. They can choose between light, medium and heavy. The companies who are really good at hand scraping will be able give the hardwood floor a reclaimed look by including wormholes, splits and other naturally-occurring features within the wood.

If you do decide to choose hand scraped hardwood flooring you will need to factor the costs that are associated with it into your budget. Unfortunately this type of flooring does not come cheap and you can find yourself paying upwards of $15 per sq ft. But once it is installed it will give a room a unique and warm rich feel to it and is certainly going to wow your friends and family when they see it for the first time.

Source: http://ezinearticles.com/?Hand-Scraped-Hardwood-Flooring-Gives-Your-Home-That-Exclusive-Look&id=572577

Friday, June 19, 2015

Making data on the web useful: scraping

Introduction

Many times data is not easily accessible – although it does exist. As much as we wish everything was available in CSV or the format of our choice – most data is published in different forms on the web. What if you want to use the data to combine it with other datasets and explore it independently?

Scraping to the rescue!

Scraping describes the method to extract data hidden in documents – such as Web Pages and PDFs and make it useable for further processing. It is among the most useful skills if you set out to investigate data – and most of the time it’s not especially challenging. For the most simple ways of scraping you don’t even need to know how to write code.

This example relies heavily on Google Chrome for the first part. Some things work well with other browsers, however we will be using one specific browser extension only available on Chrome. If you can’t install Chrome, don’t worry the principles remain similar.

Code-free Scraping in 5 minutes using Google Spreadsheets & Google Chrome

Knowing the structure of a website is the first step towards extracting and using the data. Let’s get our data into a spreadsheet – so we can use it further. An easy way to do this is provided by a special formula in Google Spreadsheets.

Save yourselves hours of time in copy-paste agony with the ImportHTML command in Google Spreadsheets. It really is magic!

Recipes

In order to complete the next challenge, take a look in the Handbook at one of the following recipes:

    Extracting data from HTML tables.

    Scraping using the Scraper Extension for Chrome

Both methods are useful for:

    Extracting individual lists or tables from single webpages

The latter can do slightly more complex tasks, such as extracting nested information. Take a look at the recipe for more details.

Neither will work for:

    Extracting data spread across multiple webpages

Challenge

Task: Find a website with a table and scrape the information from it. Share your result on datahub.io (make sure to tag your dataset with schoolofdata.org)

Tip

Once you’ve got your table into the spreadsheet, you may want to move it around, or put it in another sheet. Right click the top left cell and select “paste special” – “paste values only”.

Scraping more than one webpage: Scraperwiki

Note: Before proceeding into full scraping mode, it’s helpful to understand the flesh and bones of what makes up a webpage. Read the Introduction to HTML recipe in the handbook.

Until now we’ve only scraped data from a single webpage. What if there are more? Or you want to scrape complex databases? You’ll need to learn how to program – at least a bit.

It’s beyond the scope of this course to teach how to scrape, our aim here is to help you understand whether it is worth investing your time to learn, and to point you at some useful resources to help you on your way!

Structure of a scraper

Scrapers are comprised of three core parts:

1.    A queue of pages to scrape
2.    An area for structured data to be stored, such as a database
3.    A downloader and parser that adds URLs to the queue and/or structured information to the database.

Fortunately for you there is a good website for programming scrapers: ScraperWiki.com

ScraperWiki has two main functions: You can write scrapers – which are optionally run regularly and the data is available to everyone visiting – or you can request them to write scrapers for you. The latter costs some money – however it helps to contact the Scraperwiki community (Google Group) someone might get excited about your project and help you!.

If you are interested in writing scrapers with Scraperwiki, check out this sample scraper – scraping some data about Parliament. Click View source to see the details. Also check out the Scraperwiki documentation: https://scraperwiki.com/docs/python/

When should I make the investment to learn how to scrape?

A few reasons (non-exhaustive list!):

1.    If you regularly have to extract data where there are numerous tables in one page.

2.    If your information is spread across numerous pages.

3.    If you want to run the scraper regularly (e.g. if information is released every week or month).

4.    If you want things like email alerts if information on a particular webpage changes.

…And you don’t want to pay someone else to do it for you!

Summary:

In this course we’ve covered Web scraping and how to extract data from websites. The main function of scraping is to convert data that is semi-structured into structured data and make it easily useable for further processing. While this is a relatively simple task with a bit of programming – for single webpages it is also feasible without any programming at all. We’ve introduced =importHTML and the Scraper extension for your scraping needs.

Further Reading

1.    Scraping for Journalism: A Guide for Collecting Data: ProPublica Guides

2.    Scraping for Journalists (ebook): Paul Bradshaw

3.    Scrape the Web: Strategies for programming websites that don’t expect it : Talk from PyCon

4.    An Introduction to Compassionate Screen Scraping: Will Larson

Any questions? Got stuck? Ask School of Data!

ScraperWiki has two main functions: You can write scrapers – which are optionally run regularly and the data is available to everyone visiting – or you can request them to write scrapers for you. The latter costs some money – however it helps to contact the Scraperwiki community (Google Group) someone might get excited about your project and help you!.

If you are interested in writing scrapers with Scraperwiki, check out this sample scraper – scraping some data about Parliament. Click View source to see the details. Also check out the Scraperwiki documentation: https://scraperwiki.com/docs/python/

When should I make the investment to learn how to scrape?

A few reasons (non-exhaustive list!):

1.    If you regularly have to extract data where there are numerous tables in one page.

2.    If your information is spread across numerous pages.

3.    If you want to run the scraper regularly (e.g. if information is released every week or month).

4.    If you want things like email alerts if information on a particular webpage changes.

…And you don’t want to pay someone else to do it for you!

Summary:

In this course we’ve covered Web scraping and how to extract data from websites. The main function of scraping is to convert data that is semi-structured into structured data and make it easily useable for further processing. While this is a relatively simple task with a bit of programming – for single webpages it is also feasible without any programming at all. We’ve introduced =importHTML and the Scraper extension for your scraping needs.

Source: http://schoolofdata.org/handbook/courses/scraping/

Thursday, June 11, 2015

Gulf Stream brings ever warmer water into Arctic Ocean


The image below shows sea surface temperature anomalies in the Arctic as at June 9, 2015.


The image below shows the Arctic from a 180° rotated angle, while also showing the high sea surface temperature anomalies that are so prominent in the North Pacific (note also that the scale of sea surface temperature anomalies differs).



One may wonder why sea surface temperature anomalies below zero are visible in the North Atlantic, given that ocean heat is rising rapidly. As the IPCC said in AR5, more than 60% of the net energy increase in the climate system is stored in the upper ocean (0–700 m) during the relatively well-sampled 40-year period from 1971 to 2010, and about 30% is stored in the ocean below 700 m.

Global heat content at 0-2000 m is rising even faster than at 0-700 m 
The image below further pictures the situation as at June 9, 2015, with large blue and purple areas showing in the North Atlantic where meltwater from the Arctic has spread over time.



Indeed, the accumulation of meltwater over time has created a huge area with relatively cold water that tends to float at the surface, rather than sink, as the meltwater's salt content is very low.

In other words, the ocean underneath the meltwater at the sea surface is much warmer than the temperatures shown on above images. This can be illustrated by the situation near Svalbard. The image below shows the depth of Barents Sea, which is relatively shallow around Svalbard,


As the image shows, cold meltwater with low salt content floats around Svalbard where the water is most shallow. A 'polar front' separates cold and warm water, following the borders of the area where the seafloor is high. Warm, salty water is carried by the Gulf Stream from the (much deeper) Atlantic Ocean into the Arctic Ocean. This warm water collides with cold water east of Svalbard where the seafloor rises steeply, making this warm water come to the surface. 

Warm water from the Atlantic also comes to the surface west of Svalbard, where warm and cold water are similarly separated by the height of the seafloor. 

The image below shows that on June 8, 2015, sea surface temperatures as high as 11.4°C (52.52°F) were recorded to the south-east of Svalbard (a 9.8°C or 17.64°F anomaly), while sea surface temperatures as high as 7.4°C (45.32°F) were recorded to the west of Svalbard (a 3.5°C or 6.3°F anomaly). 

Sea surface temperatures (top) and sea surface temperature anomalies (bottom) on June 8, 2015.
The image below shows the situation on June 21, 2015, when sea surface temperatures as high as 12.5°C (54.5°F) were recorded to the south-east of Svalbard (a 10.2°C or 18.4°F anomaly), while sea surface temperatures as high as 8.5°C (47.3°F) were recorded to the west of Svalbard (a 3.7°C or 6.7°F anomaly) and as high as 7.3°C (45.1°F) further west of Svalbard (a 3.7°C or 6.7°F anomaly).

Sea surface temperatures (top) and sea surface temperature anomalies (bottom) on June 21, 2015.
These spots where warm water comes to the surface give an indication of how high temperatures of the water are below the surface. As more than 90% of the extra heat caused by people's emissions continues to go into oceans, ever warmer water will be carried by the Gulf Stream into the Arctic Ocean, with the danger that this will warm up sediments under the Arctic Ocean seafloor, triggering huge methane eruptions with gigantic warming potential.

The above images picture the situation as at June 8 and June 21, 2015, when summer on the Northern Hemisphere had just started. In other words, temperatures will rise over the next few months. To get an idea of what can be expected, the image below shows the situation as at September 1, 2014, when sea surface temperatures near Svalbard were as high as 17.5°C (or 63.5°F), an anomaly of 11.9°C (or 21.42°F)

Sea surface temperatures (top) and sea surface temperature anomalies (bottom) on September 1, 2014.
On the combination image below, the image on the left shows large areas (red circles) where warmer water is visible through the sea ice, indicating the presence of even warmer water at greater depth in the Arctic Ocean. The image on the right (from an earlier post) roughly shows how ocean heat can be carried by the Gulf Stream from the Atlantic Ocean off the coast of North America into the Arctic Ocean, diving under the sea ice somewhere between Greenland and Svalbard.


Then, there is also the impact of the heat wave in Russia warming up the Arctic Ocean, as indicated by the red circle on the image below.


The image below shows May Northern Hemisphere ocean temperature anomalies with respect to the period 1901-2000, based on NOAA data and with a polynomial trendline added.



ACCELERATED WARMING IN ARCTIC CAUSING MORE CIRRUS CLOUDS

As oceans warm, the atmosphere can be expected to carry more water vapor. This conclusion is supported by studies such as this one. With more water vapor in the atmosphere, storms can be expected to strike with greater intensity. This conclusion is supported by studies such as this one. This situation gets worse as weather gets more extreme.

What makes things even worse is that, as the Gulf Stream keeps bringing ever warmer water into the Arctic Ocean, loss of sea ice in the Arctic Ocean and more open water will be the result. More open water means more opportunity for storms to develop and for water to evaporate into the atmosphere. The combination of more open water, more extreme weather, and more water vapor in the atmosphere leads to ever more severe storms that can come with destructive winds and that can suddenly unleash massive amounts of precipitation.

Studies such as this one warn that plumes above the anvils of severe storms can bring water vapor up into the stratosphere, contributing to the formation of cirrus clouds that block a lot of heat that would otherwise be radiated away, from Earth into space.

More cirrus clouds thus is another self-reinforcing feedback loop of accelerated warming in the Arctic. As the Gulf Stream keeps bringing ever warmer water into the Arctic Ocean, such feedbacks will further speed up warming, as discussed at the feedbacks page.

Are there geoengineering methods to reduce cirrus clouds? Seeding of high altitude clouds with ice may be able to do this, resulting in more longwave radiation escaping into space, as discussed in this study.

The text in this box was also posted at the Geoengineering group at facebook

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan


on June 8, 2015, sea surface temperatures as high as 11.4°C (52.52°F) were recorded to the south-east of Svalbard (a 9.8...
Posted by Sam Carana on Thursday, June 11, 2015

Monday, June 8, 2015

Scraping Services - Assuring Scraping Success with Proxy Data Scraping

Have you ever heard of "Data Scraping?" Data Scraping is the process of collecting useful data that has been placed in the public domain of the internet (private areas too if conditions are met) and storing it in databases or spreadsheets for later use in various applications. Data Scraping technology is not new and many a successful businessman has made his fortune by taking advantage of data scraping technology.

Sometimes website owners may not derive much pleasure from automated harvesting of their data. Webmasters have learned to disallow web scrapers access to their websites by using tools or methods that block certain ip addresses from retrieving website content. Data scrapers are left with the choice to either target a different website, or to move the harvesting script from computer to computer using a different IP address each time and extract as much data as possible until all of the scraper's computers are eventually blocked.

Thankfully there is a modern solution to this problem. Proxy Data Scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program executes an extraction from a website, the website thinks it is coming from a different IP address. To the website owner, proxy data scraping simply looks like a short period of increased traffic from all around the world. They have very limited and tedious ways of blocking such a script but more importantly -- most of the time, they simply won't know they are being scraped.

You may now be asking yourself, "Where can I get Proxy Data Scraping Technology for my project?" The "do-it-yourself" solution is, rather unfortunately, not simple at all. Setting up a proxy data scraping network takes a lot of time and requires that you either own a bunch of IP addresses and suitable servers to be used as proxies, not to mention the IT guru you need to get everything configured properly. You could consider renting proxy servers from select hosting providers, but that option tends to be quite pricey but arguably better than the alternative: dangerous and unreliable (but free) public proxy servers.

There are literally thousands of free proxy servers located around the globe that are simple enough to use. The trick however is finding them. Many sites list hundreds of servers, but locating one that is working, open, and supports the type of protocols you need can be a lesson in persistence, trial, and error. However if you do succeed in discovering a pool of working public proxies, there are still inherent dangers of using them. First off, you don't know who the server belongs to or what activities are going on elsewhere on the server. Sending sensitive requests or data through a public proxy is a bad idea. It is fairly easy for a proxy server to capture any information you send through it or that it sends back to you. If you choose the public proxy method, make sure you never send any transaction through that might compromise you or anyone else in case disreputable people are made aware of the data.

A less risky scenario for proxy data scraping is to rent a rotating proxy connection that cycles through a large number of private IP addresses. There are several of these companies available that claim to delete all web traffic logs which allows you to anonymously harvest the web with minimal threat of reprisal. Companies such as offer large scale anonymous proxy solutions, but often carry a fairly hefty setup fee to get you going.

The other advantage is that companies who own such networks can often help you design and implementation of a custom proxy data scraping program instead of trying to work with a generic scraping bot. After performing a simple Google search, I quickly found one company (www.ScrapeGoat.com) that provides anonymous proxy server access for data scraping purposes. Or, according to their website, if you want to make your life even easier, ScrapeGoat can extract the data for you and deliver it in a variety of different formats often before you could even finish configuring your off the shelf data scraping program.

Whichever path you choose for your proxy data scraping needs, don't let a few simple tricks thwart you from accessing all the wonderful information stored on the world wide web!

Source: http://ezinearticles.com/?Assuring-Scraping-Success-with-Proxy-Data-Scraping&id=248993

Friday, June 5, 2015

High Temperatures in the Arctic


The images below illustrate extremely high temperatures forecast to hit Russia on June 6, 2015, as also discussed in the previous post.


A temperature of 29.4°C (84.92°F) is forecast for the location at the green circle for June 6, 2015. The location is close to the Arctic Ocean and to rivers ending in the Arctic Ocean, as also shown on the image below.


The location, at a latitude of 66.48°N, is approximately on the Arctic Circle, which runs 66°33′45.8″ north of the Equator. North of the Arctic Circle, the sun is above the horizon for 24 continuous hours at least once a year.


The many hours of sunshine make that, during the months June and July, insolation in the Arctic is higher than anywhere else on Earth, as shown on above image, by Pidwirny (2006).
Insolation, with contour labels (green) in units of W m−2

The size of the June snow and ice cover is so vitally important as insolation in the Arctic is at its highest at the June Solstice.

The Wikipedia image on the right calculates the theoretical daily-average insolation at the top of the atmosphere, where θ is the polar angle of the Earth's orbit, and θ = 0 at the vernal equinox, and θ = 90° at the summer solstice; φ is the latitude of the Earth.

The calculation assumed conditions appropriate for 2000 A.D.: a solar constant of S0 = 1367 W m−2, obliquity of ε = 23.4398°, longitude of perihelion of ϖ = 282.895°, eccentricity e = 0.016704.

Snow and ice cover on land can take up a large area, even larger than sea ice. In May 2015, the area of snow extent on the Northern Hemisphere was 17 million square km, while sea ice extent in May 2015 was below 13.5 million square km. 

Northern Hemisphere snow, May 2015. Credit: Rutgers University Global Snow Lab
The chart below shows the decline of snow cover on land on the Northern Hemisphere in Spring over the years. 

Credit: Rutgers University Global Snow Lab
High temperatures over the Arctic Ocean are heating up the snow cover on land and the sea ice from above. High temperatures also set the scene for wildfires that can emit huge amounts of pollutants, including dust and black carbon that, when settling on the sea ice, can cause its reflectivity to fall. Rivers furthermore feed warm water into the Arctic Ocean, further heating up the sea ice from below. 

The image below shows Arctic sea ice extent at June 3, 2015, when Arctic sea ice extent was merely 11.624 million square kilometers, a record low for the time of the year since satellite started measurements in 1979. 



Sea ice melting occurs due to heat from above, i.e. absorbed sunlight. Once the sea ice is gone, energy from sunlight that previously went into melting and transforming ice into water, will instead go into warming up the Arctic Ocean and the sediments under the seafloor.

In addition, sea ice is also melting due to heat from below. Much of this heat is carried by the Gulf Stream and by rivers into the Arctic Ocean. Once the sea ice is gone, all this heat will go into warming up the Arctic Ocean and the sediments under the seafloor.

The sea ice acts as a heat buffer by absorbing energy in the process of melting. In other words, as long as there is sea ice, it will absorb heat and this will prevent this heat from raising the temperature of the water in the Arctic. Once the sea ice is gone, this latent heat must go elsewhere.

As the sea ice heats up, 2.06 J/g of heat goes into every degree Celsius that the temperature of the ice rises. While the ice is melting, all energy (at 334J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K, 32°F).

Once all ice has turned into water, all subsequent heat goes into heating up the water, at 4.18 J/g for every degree Celsius that the temperature of water rises.

The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. The energy required to melt a volume of ice can raise the temperature of the same volume of rock by 150º C.
Decline of Arctic sea ice means that a lot more heat will be absorbed by the Arctic Ocean.



Thick sea ice covered with snow can reflect as much as 90% of the incoming solar radiation. After the snow begins to melt, and because shallow melt ponds have an albedo (or reflectivity) of approximately 0.2 to 0.4, the surface albedo drops to about 0.75. As melt ponds grow and deepen, the surface albedo can drop to 0.15, while the ocean reflects only 6% of the incoming solar radiation and absorbs the rest.

As Professor Peter Wadhams, University of Cambridge, once calculated, a collapse of the sea ice would go hand on hand with dramatic loss of snow and ice cover on land in the Arctic. The albedo change resulting from the snowline retreat on land is similarly large as the retreat of sea ice, so the combined impact could be well over 2 W/sq m. To put this in context, albedo changes in the Arctic alone could more than double the net radiative forcing resulting from the emissions caused by all people of the world, estimated by the IPCC to be 1.6 W/sq m in 2007 and 2.29 W/sq m in 2013.

Professor Peter Wadhams on albedo changes in the Arctic

Update June 8, 2015: The website at earth.nullschool.net shows that over the past few days temperatures over 30°C (86°F) were reached at several locations over rivers ending up in the Arctic Ocean.

The animation below, by ClimateReanalyzer, shows the heat wave and the storm that hit the Arctic recently.

This animation shows the current GFS model 8-day forecast for the Arctic for six meteorological parameters (precip/cloudcover; wind, pressure, precipitable water, temperature, temperature anomaly). The forecast begins with an impressive storm twirling around the North Pole with 10-meter winds peaking around 55 km/h (~35 mi/h), which fades as the low pressure breaks down. The storm is coupled to an early season heat wave that hit Siberia this week with the development of a high amplitude ridge in the jet stream.In mid August 2012, a comparable storm churned up the sea ice and contributed to the record minimum ice extent that emerged in September. Arctic sea ice is more resilient to wind in early June when it is still relatively thick and compacted than it is in mid August towards the end of the melt season. This current storm is therefore unlikely to have the same impact as the Aug 2012 storm. But the event is worth mentioning nonetheless.

Posted by Climate Reanalyzer on Sunday, June 7, 2015

Arctic sea ice extent at June 3, 2015, was merely 11.624 million square kilometers, a record low for the time of the...

Posted by Sam Carana on Friday, June 5, 2015

Tuesday, June 2, 2015

Twitter Scraper Python Library

I wanted to save the tweets from Transparency Camp. This prompted me to turn Anna‘s basic Twitter scraper into a library. Here’s how you use it.

Import it. (It only works on ScraperWiki, unfortunately.)

from scraperwiki import swimport

search = swimport('twitter_search').search

Then search for terms.

search(['picnic #tcamp12', 'from:TCampDC', '@TCampDC', '#tcamp12', '#viphack'])

A separate search will be run on each of these phrases. That’s it.

A more complete search

Searching for #tcamp12 and #viphack didn’t get me all of the tweets because I waited like a week to do this. In order to get a more complete list of the tweets, I looked at the tweets returned from that first search; I searched for tweets referencing the users who had tweeted those tweets.

from scraperwiki.sqlite import save, select

from time import sleep

# Search by user to get some more

users = [row['from_user'] + ' tcamp12' for row in \

select('distinct from_user from swdata where from_user where user > "%s"' \

% get_var('previous_from_user', ''))]

for user in users:

    search([user], num_pages = 2)

    save_var('previous_from_user', user)

    sleep(2)

By default, the search function retrieves 15 pages of results, which is the maximum. In order to save some time, I limited this second phase of searching to two pages, or 200 results; I doubted that there would be more than 200 relevant results mentioning a particular user.

The full script also counts how many tweets were made by each user.

Library

Remember, this is a library, so you can easily reuse it in your own scripts, like Max Richman did.

Source: https://scraperwiki.wordpress.com/2012/07/04/twitter-scraper-python-library/

Monday, June 1, 2015

Heat Wave Forecast For Russia Early June 2015


Following heat waves in Alaska and the north of Canada, the Arctic looks set to be hit by heat waves along the north coast of Russia in early June, 2015. The image below shows temperature anomalies at the top end of the scale for a large area of Russia forecast for June 6, 2015.


Meanwhile, the heat wave in India continues. It killed more than 2,100 people, reports Reuters, adding that the heat wave also killed more than 17 million chickens in May. The number of people killed by the heat wave is now approaching the 2,541 people killed by the 1998 heat wave in India, which is listed as the record number of deaths due to extreme temperatures in India by the Emergency Events Database.

Further records listed by the database are the well over 70,000 people killed by the 2003 heat wave in Europe and 55,736 people killed by the 2010 heat wave in Russia alone.

On above temperature forecast (left image, top right), temperatures over a large area of India will be approaching the top end of the scale, i.e. 50°C or 120°F. While such temperatures are not unusual in India around this time of year, the length of the heat wave is extraordinary. The heat wave that is about to hit Russia comes with even higher temperature anomalies. Even though temperatures in Russia are unlikely to reach the peaks that hit India, the anomalies are at the top end of the scale, i.e. 20°C or 36°F.

The image below shows a forecast for June 6, 2015, with high temperatures highlighted at four locations (green circles).


Below is a forecast for the jet stream as at June 7, 2015.

The animation below runs the time of the top image (June 6, 2015, 0900 UTC) to the above image (June 7, 2015, 1200 UTC), showing forecasts of the jet stream moving over the Arctic Ocean, with its meandering shape holding warm air that extends from Russia deep into the Arctic Ocean.


Below is another view of the situation.
Jet stream on June 6, 2015, 0900 UTC, i.e. the date and time that corresponds with the top image.
Clicking on this link will bring you to an animated version that also shows the wind direction, highlighting the speed (I clocked winds of up to 148 km/h, or 92 mph) of the jet stream as it moves warm air from Russia into the Arctic Ocean, sped up by cyclonic wind around Svalbard.

This is the 'open doors' feedback at work, i.e. feedback #4 on the feedbacks page, where accelerated warming in the Arctic causes the jet stream to meander more, which allows warm air to enter the Arctic more easily, in a self-reinforcing spiral that further accelerates warming in the Arctic.

The implications of temperatures that are so much higher than they used to be are huge for the Arctic. These high temperatures are heating up the sea ice from above, while rivers further feed warm water into the Arctic Ocean, heating up the sea ice from below.

Furthermore, such high temperatures set the scene for wildfires that can emit huge amounts of pollutants, among which dust and black carbon that, when settling on the sea ice, can cause large albedo falls.

The image below shows Russian rivers that end up in the Arctic Ocean, while the image also shows sea surface temperature anomalies as high as 8.2°C or 14.76°F (at the green circle, near Svalbard).



The big danger is that the combined impact of these feedbacks will accelerate warming in the Arctic to a point where huge amounts of methane will erupt abruptly from the seafloor of the Arctic Ocean.
The image below shows that methane levels as high as 2,566 ppb were recorded on May 31, 2015, while high methane levels are visible over the East Siberian Arctic Shelf.


Below is part of a comment on the situation by Albert Kallio:
As the soils warm up the bacteria in them and the insulating capacities of snow themselves tend to lead snow cover melting faster the warmer the soil it rests on becomes. (Thus the falling snow melts very rapidly on British soil surface if compared to Finland or Siberia where the underlying ground is much colder, even if occasionally the summers have similar or even higher temperatures).

The large snow cover over the mid latitude land masses is a strong negative feedback for the heat intake from the sun if the season 2015 is compared with the season 2012, but the massive sea ice and polar air mass out-transportation equally strongly weakens formation of new sea ice around the North Pole (and along the edges of the Arctic Ocean) as the air above the Arctic Ocean remains warm. The pile up of thin coastal ice also increases vertical upturning of sea water and this could have detrimental effects for the frozen seabed that is storing methane clathrates. The sunlight intake of the sea areas where sea ice has already disappeared corresponds largely with the 2012 season.

The inevitable snow melting around the Arctic Ocean will also transport record volumes of warmed melt water from the south to the Arctic Ocean. The available heat in the Arctic may also be later enhanced by the high sea water temperatures that prevail along the eastern and western coasts of North America, as well as El Nino event increasing temporarily air and sea surface temperatures. This leads to more depressions around Japan and Korea from where the warm air, storms and rains migrate towards Alaska and pull cold air away from Arctic over Russia, while pushing warm air through the Baring Strait area and Alaska to the Arctic Ocean region.

Forecasting seasonal out comes is likely to be increasingly difficult to make due to increasing number of variables in the seasonal melting processes and the resulting lack of historic precedents when the oceans and Arctic has been as warm as today. Thus the interplay of the opposing forces makes increasingly chaotic outcomes, in which the overall trend will always be for less ice and snow at the end of the season. Because of these reasons - including many others not explicitly mentioned here - the overall outcome for the blue ocean, or the ice-free Arctic Ocean, will be inevitable.

Whether the loss of sea ice happens this summer, or next, or one after that, the problem isn't going to go away and more needs to be done to geoengineer to save Arctic ice and wildlife dependent on summer sea ice.
John Davies responds:
Albert Kallio is absolutely right in saying that warmer temperatures are leading to a blue ocean event though the problem remains in which year this will happen. Additionally Methane is being released from the bottom of the ocean leading to increased Methane concentrations and all that means for a destabilising global climate. Frustratingly, the higher temperatures and increasing Methane concentrations are not yet quite sufficient for us to persuade the scientific community and the public that Armageddon is on the way. Hence it is not yet possible to be in a position to persuade the world community of the urgent need for Geo-engineering to save the Arctic and Global climate. However we may reach this situation in the near future and that will be the only time when it might be possible to save the global climate and prevent Armageddon.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.



This image shows Russian rivers that end up in the Arctic Ocean, while it also shows sea surface temperature anomalies...
Posted by Sam Carana on Monday, June 1, 2015